What is encapsulation??
Containing and hiding information about an object, such as internal data structures and code. Encapsulation isolates the internal complexity of an object's operation from the rest of the application. For example, a client component asking for net revenue from a business object need not know the data's origin.
What is inheritance?
Inheritance allows one class to reuse the state and behavior of another class. The derived
class inherits the properties and method implementations of the base class and extends it by
overriding methods and adding additional properties and methods.
Polymorphism allows a client to treat different objects in the same way even if they were
created from different classes and exhibit different behaviors. You can use implementation
inheritance to achieve polymorphism in languages such as C++ and Java. Base class object's
pointer can invoke methods in derived class objects. You can also achieve polymorphism in
C++ by function overloading and operator overloading.
What is constructor or ctor?
Constructor creates an object and initializes it. It also creates vtable for virtual
functions. It is different from other methods in a class.
What is destructor?
Destructor usually deletes any extra resources allocated by the object.
What is default constructor?
Constructor with no arguments or all the arguments has default values.
What is copy constructor?
Constructor which initializes the it's object member variables ( by shallow copying) with
another object of the same class. If you don't implement one in your class then compiler
implements one for you.
for example:
Boo Obj1(10); // calling Boo constructor
Boo Obj2(Obj1); // calling boo copy constructor
Boo Obj2 = Obj1;// calling boo copy constructor
When are copy constructors called?
Copy constructors are called in following cases:
a) when a function returns an object of that class by value
b) when the object of that class is passed by value as an argument to a function
c) when you construct an object based on another object of the same class
d) When compiler generates a temporary object
What is assignment operator?
Default assignment operator handles assigning one object to another of the same class.
Member to member copy (shallow copy)
What are all the implicit member functions of the class? Or what are all the functions which
compiler implements for us if we don't define one.??
default ctor
copy ctor
assignment operator
default destructor
address operator
What is conversion constructor?
constructor with a single argument makes that constructor as conversion ctor and it can be
used for type conversion.
for example:
class Boo
{
public:
Boo( int i );
};
Boo BooObject = 10 ; // assigning int 10 Boo object
What is conversion operator??
class can have a public method for specific data type conversions.
for example:
class Boo
{
double value;
public:
Boo(int i )
operator double()
{
return value;
}
};
Boo BooObject;
double i = BooObject; // assigning object to variable i of type double. now conversion
operator gets called to assign the value.
What is diff between malloc()/free() and new/delete?
malloc allocates memory for object in heap but doesn't invoke object's constructor to
initiallize the object.
new allocates memory and also invokes constructor to initialize the object.
malloc() and free() do not support object semantics
Does not construct and destruct objects
string * ptr = (string *)(malloc (sizeof(string)))
Are not safe
Does not calculate the size of the objects that it construct
Returns a pointer to void
int *p = (int *) (malloc(sizeof(int)));
int *p = new int;
Are not extensible
new and delete can be overloaded in a class
"delete" first calls the object's termination routine (i.e. its destructor) and then
releases the space the object occupied on the heap memory. If an array of objects was
created using new, then delete must be told that it is dealing with an array by preceding
the name with an empty []:-
Int_t *my_ints = new Int_t[10];
...
delete []my_ints;
What is the diff between "new" and "operator new" ?
"operator new" works like malloc.
What is difference between template and macro??
There is no way for the compiler to verify that the macro parameters are of compatible
types. The macro is expanded without any special type checking.
If macro parameter has a postincremented variable ( like c++ ), the increment is performed
two times.
Because macros are expanded by the preprocessor, compiler error messages will refer to the
expanded macro, rather than the macro definition itself. Also, the macro will show up in
expanded form during debugging.
for example:
Macro:
#define min(i, j) (i < j ? i : j) template: template
T min (T i, T j)
{
return i < j ? i : j; }
int a=2, b=3;
swap( a, b );
Basically, inside the function there won't be any copy of the arguments "x" and "y" instead they refer to original variables a and b. so no extra memory needed to pass arguments and it is more efficient. When do use "const" reference arguments in function?
a) Using const protects you against programming errors that inadvertently alter data.
b) Using const allows function to process both const and non-const actual arguments, while a function without const in the prototype can only accept non constant arguments.
c) Using a const reference allows the function to generate and use a temporary variable appropriately. When are temporary variables created by C++ compiler? Provided that function parameter is a "const reference", compiler generates temporary variable in following 2 ways.
a) The actual argument is the correct type, but it isn't
Lvalue double Cuberoot ( const double & num )
{ num = num * num * num; return num; }
double temp = 2.0; double value = cuberoot ( 3.0 + temp );
// argument is a expression and not a Lvalue;
b) The actual argument is of the wrong type, but of a type that can be converted to the correct type long temp = 3L; double value = cuberoot ( temp); // long to double conversion What is virtual function? When derived class overrides the base class method by redefining the same function, then if client wants to access redefined the method from derived class through a pointer from base class object, then you must define this function in base class as virtual function. class parent { void Show() { cout << "i'm parent" << endl; } }; class child: public parent { void Show() { cout << "i'm child" << endl; } }; parent * parent_object_ptr = new child; parent_object_ptr->show() // calls parent->show() i
{
virtual void Show()
{
cout << "i'm parent" << endl;
implementation in derived class. This base class is called abstract class and client won't
able to instantiate an object using this base class.
You can make a pure virtual function or abstract class this way..
class Boo
{
void foo() = 0;
}
Boo MyBoo; // compilation error
of some power of two. So a pointer with two byte alignment has a zero in the least
significant bit. And a pointer with four byte alignment has a zero in both the two least
significant bits. And so on. More alignment means a longer sequence of zero bits in the
lowest bits of a pointer.
What problem does the namespace feature solve?
Multiple providers of libraries might use common global identifiers causing a name collision
when an application tries to link with two or more such libraries. The namespace feature
surrounds a library's external declarations with a unique namespace that eliminates the
potential for those collisions.
namespace [identifier] { namespace-body }
A namespace declaration identifies and assigns a name to a declarative region.
The identifier in a namespace declaration must be unique in the declarative region in which
it is used. The identifier is the name of the namespace and is used to reference its
members.
What is the use of 'using' declaration?
A using declaration makes it possible to use a name from a namespace without the scope
operator.
What is an Iterator class? A class that is used to traverse through the objects maintained by a container class. There
are five categories of iterators: input iterators, output iterators, forward iterators,
bidirectional iterators, random access. An iterator is an entity that gives access to the
contents of a container object without violating encapsulation constraints. Access to the
contents is granted on a one-at-a-time basis in order. The order can be storage order (as in
lists and queues) or some arbitrary order (as in array indices) or according to some
ordering relation (as in an ordered binary tree). The iterator is a construct, which
provides an interface that, when called, yields either the next element in the container, or
some value denoting the fact that there are no more elements to examine. Iterators hide the
details of access to and update of the elements of a container class. Something like a
pointer.
A dangling pointer arises when you use the address of an object after its lifetime is over.
This may occur in situations like returning addresses of the automatic variables from a
function or using the address of the memory block after it is freed.
What do you mean by Stack unwinding?
It is a process during exception handling when the destructor is called for all local
objects in the stack between the place where the exception was thrown and where it is
caught.
Name the operators that cannot be overloaded??
sizeof, ., .*, .->, ::, ?:
A container class is a class that is used to hold objects in memory or external storage. A container class acts as a generic holder. A container class has a predefined behavior and a well-known interface. A container class is a supporting class whose purpose is to hide the topology used for maintaining the list of objects in memory. When a container class contains a group of mixed objects, the container is called a heterogeneous container; when the container is holding a group of objects that are all the same, the container is called a
homogeneous container.
The __inline keyword tells the compiler to substitute the code within the function definition for every instance of a function call. However, substitution occurs only at the compiler's discretion. For example, the compiler does not inline a function if its address is taken or if it is too large to inline.
With the C++ language, you can overload functions and operators. Overloading is the practice
of supplying more than one definition for a given function name in the same scope.
- Any two functions in a set of overloaded functions must have different argument lists.
- Overloading functions with argument lists of the same types, based on return type alone,
is an error.
To override a method, a subclass of the class that originally declared the method must
declare a method with the same name, return type (or a subclass of that return type), and
same parameter list.
The definition of the method overriding is:
• Must have same method name.
• Must have same data type.
• Must have same argument list.
Overriding a method means that replacing a method functionality in child class. To imply
overriding functionality we need parent and child classes. In the child class you define the
same method signature as one defined in the parent class.
The this pointer is a pointer accessible only within the member functions of a class,
struct, or union type. It points to the object for which the member function is called.
Static member functions do not have a this pointer.
When a nonstatic member function is called for an object, the address of the object is
passed as a hidden argument to the function. For example, the following function call
myDate.setMonth( 3 );
can be interpreted this way:
setMonth( &myDate, 3 );
The object's address is available from within the member function as the this pointer. It is
legal, though unnecessary, to use the this pointer when referring to members of the class.
The code has two built-in pitfalls. First, if it executes in a member function for an extern, static, or automatic object, the program will probably crash as soon as the delete statement executes. There is no portable way for an object to tell that it was instantiated on the heap, so the class cannot assert that its object is properly instantiated. Second, when an object commits suicide this way, the using program might not know about its demise. As far as the instantiating program is concerned, the object remains in scope and continues to exist even though the object did itself in. Subsequent dereferencing of the pointer can and usually does lead to disaster.You should never do this. Since compiler does not know whether the object was allocated on
the stack or on the heap, "delete this" could cause a disaster.
Virtual functions are implemented using a table of function pointers, called the vtable.
There is one entry in the table per virtual function in the class. This table is created by
the constructor of the class. When a derived class is constructed, its base class is
constructed first which creates the vtable. If the derived class overrides any of the base
classes virtual functions, those entries in the vtable are overwritten by the derived class
constructor. This is why you should never call virtual functions from a constructor: because
the vtable entries for the object may not have been set up by the derived class constructor
yet, so you might end up calling base class implementations of those virtual functions
The process of encoding the parameter types with the function/method name into a unique name
is called name mangling. The inverse process is called demangling.
For example Foo::bar(int, long) const is mangled as `bar__C3Fooil'.
For a constructor, the method name is left out. That is Foo::Foo(int, long) const is mangled
as `__C3Fooil'.
A reference must always refer to some object and, therefore, must always be initialized;
pointers do not have such restrictions. A pointer can be reassigned to point to different
objects while a reference always refers to an object with which it was initialized.
The postfix version of operator++() has a dummy parameter of type int. The prefix version does not have dummy parameter.
Const char *myPointer is a non constant pointer to constant data; while char *const
myPointer is a constant pointer to non constant data.
throw an exception. Constructors don't have a return type, so it's not possible to use return codes. The best way to signal constructor failure is therefore to throw an exception.
Write a message to a log-file. But do not throw an exception.
The C++ rule is that you must never throw an exception from a destructor that is being
called during the "stack unwinding" process of another exception. For example, if someone
says throw Foo(), the stack will be unwound so all the stack frames between the throw Foo()
and the } catch (Foo e) { will get popped. This is called stack unwinding.
During stack unwinding, all the local objects in all those stack frames are destructed. If
one of those destructors throws an exception (say it throws a Bar object), the C++ runtime
system is in a no-win situation: should it ignore the Bar and end up in the } catch (Foo e)
{ where it was originally headed? Should it ignore the Foo and look for a } catch (Bar e) {
handler? There is no good answer -- either choice loses information.
So the C++ language guarantees that it will call terminate() at this point, and terminate()
kills the process. Bang you're dead.
Using virtual destructors, you can destroy objects without knowing their type - the correct
destructor for the object is invoked using the virtual function mechanism. Note that
destructors can also be declared as pure virtual functions for abstract classes.
if someone will derive from your class, and if someone will say "new Derived", where
"Derived" is derived from your class, and if someone will say delete p, where the actual
object's type is "Derived" but the pointer p's type is your class.
Can you think of a situation where your program would crash without reaching the breakpoint
C++ allows for dynamic initialization of global variables before main() is invoked. It is possible that initialization of global will invoke some function. If this function crashes the crash will occur before main() is entered.
Both non-static const data members and reference data members cannot be assigned values; instead, you should use initialization list to initialize them.
No. Passing by value and by reference looks identical to the caller.
The default member and base class access specifiers are different.
The C++ struct has all the features of the class. The only differences are that a struct
defaults to public member access and public base class inheritance, and a class defaults to
the private access specifier and private base class inheritance.
It will turn off "name mangling" for func so that one can link to code compiled by a C
compiler.
Multiple Inheritance is the process whereby a child can be derived from more than one parent
class. The advantage of multiple inheritance is that it allows a class to inherit the
functionality of more than one base class thus allowing for modeling of complex
relationships. The disadvantage of multiple inheritance is that it can lead to a lot of
confusion(ambiguity) when two base classes implement a method with the same name.
What are the access privileges in C++? What is the default access level?
The access privileges in C++ are private, public and protected. The default access level
assigned to members of a class is private. Private members of a class are accessible only
within the class and by friends of the class. Protected members are accessible by the class
itself and it's sub-classes. Public members of a class can be accessed by anyone.
What is a nested class? Why can it be useful?
A nested class is a class enclosed within the scope of another class. For example:
//
class OuterClass
{
class NestedClass
{
// ...
};
// ...
};
Nested classes are useful for organizing code and controlling access and dependencies.
Nested classes obey access rules just like other parts of a class do; so, in Example 1, if
NestedClass is public then any code can name it as OuterClass::NestedClass. Often nested
classes contain private implementation details, and are therefore made private; in Example
1, if NestedClass is private, then only OuterClass's members and friends can use
When you instantiate as outer class, it won't instantiate inside class.
What is a local class? Why can it be useful?
local class is a class defined within the scope of a function -- any function, whether a
member function or a free function. For example:
//
int f()
{
class LocalClass
{
// ...
};
// ...
};
Like nested classes, local classes can be a useful tool for managing code dependencies.
Can a copy constructor accept an object of the same class as parameter, instead of reference
of the object?
No. It is specified in the definition of the copy constructor itself. It should generate an
error if a programmer specifies a copy constructor with a first argument that is an object
and not a reference.
(From Microsoft) Assume I have a linked list contains all of the alphabets from ‘A’ to ‘Z’.
I want to find the letter ‘Q’ in the list, how does you perform the search to find the ‘Q’?
void reverselist(void)
{
if(head==0)
return;
if(head->next==0)
return;
if(head->next==tail)
{
head->next = 0;
tail->next = head;
}
else
{
node* pre = head;
node* cur = head->next;
node* curnext = cur->next;
head->next = 0;
cur->next = head;
for(; curnext!=0; )
{
cur->next = pre;
pre = cur;
cur = curnext;
curnext = curnext->next;
}
curnext->next = cur;
}
}
How do you find out if a linked-list has an end? (i.e. the list is not a cycle)
You can find out by using 2 pointers. One of them goes 2 nodes each time. The second one
goes at 1 nodes each time. If there is a cycle, the one that goes 2 nodes each time will
eventually meet the one that goes slower. If that is the case, then you will know the
linked-list is a cycle.
You can do the Echo $RANDOM. It will return a undefined variable if you are from the
C-Shell, just a return prompt if you are from the Bourne shell, and a 5 digit random numbers
if you are from the Korn shell. You could also do a ps -l and look for the shell with the
highest PID.
A relation schema R is in BCNF with respect to a set F of functional dependencies if for all
functional dependencies in F+ of the form a->b, where a and b is a subset of R, at least one
of the following holds:
• a->b is a trivial functional dependency (b is a subset of a)
• a is a superkey for schema R
Could you tell something about the Unix System Kernel?
computer’s resouces and scheduling user jobs so that each one gets its fair share of
resources.
Make file is a utility in Unix to help compile large programs. It helps by only compiling
the portion of the program that has been changed
How do you link a C++ program to C functions?
By using the extern "C" linkage specification around the C function declarations.
Supports embedded nulls
Provide the following methods (at least)
Constructor
Destructor
Copy constructor
Assignment operator
Addition operator (concatenation)
Return character at location
Return substring at location
Find substring
Provide versions of methods for String and for char* arguments
Suppose that data is an array of 1000 integers. Write a single function call that will sort
the 100 elements data [222] through data [321].
Answer: quicksort ((data + 222), 100);
Differentiate between a template class and class template.
When does a name clash occur?
Define namespace.
What is the use of ‘using’ declaration.
What is an Iterator class?
List out some of the OODBMS available.
List out some of the object-oriented methodologies.
What is an incomplete type?
What is a dangling pointer?
Differentiate between the message and method.
What is an adaptor class or Wrapper class?
What is a Null object?
What is class invariant?
What are the conditions that have to be met for a condition to be an invariant of the class?
What are proxy objects?
Name some pure object oriented languages.
Name the operators that cannot be overloaded.
What is a node class?
What is an orthogonal base class?
What is a container class? What are the types of container classes?
What is a protocol class?
What is a mixin class?
What is a concrete class?
What is the handle class?
What is an action class?
When can you tell that a memory leak will occur?
What are the main underlying concepts of object orientation?
What do u meant by "SBI" of an object?
Differentiate persistent & non-persistent objects?
What do you meant by active and passive objects?
What is meant by software development method?
What do you meant by static and dynamic modeling?
How to represent the interaction between the modeling elements?
Why generalization is very strong?
Differentiate Aggregation and containment?
What is meant by "method-wars"?
Whether unified method and unified modeling language are same or different?
Who were the three famous amigos and what was their contribution to the object community?
Differentiate the class representation of Booch, Rumbaugh and UML?
What is an USECASE? Why it is needed?
Who is an Actor?
What is guard condition?
Differentiate the following notations?
USECASE is an implementation independent notation. How will the designer give the
implementation details of a particular USECASE to the programmer?
Suppose a class acts an Actor in the problem domain, how to represent it in the static
model?
Why does the function arguments are called as "signatures"?
No comments:
Post a Comment